• 1.

    Fong, M. Y., Zhou, W., Liu, L., Alontaga, A. Y., Chandra, M., Ashby, J. et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17, 183–194 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O. et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49, 367–376 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Huang, R. & Zong, X. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit. Rev. Oncol. Hematol. 115, 13–22 (2017).

    PubMed 

    Google Scholar 

  • 4.

    Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 39, 347–354 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Riganti, C., Gazzano, E., Polimeni, M., Aldieri, E. & Ghigo, D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic. Biol. Med. 53, 421–436 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Stanton, R. C. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life 64, 362–369 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Rao, X., Duan, X., Mao, W., Li, X., Li, Z., Li, Q. et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat. Commun. 6, 8468 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Pham, C. G., Bubici, C., Zazzeroni, F., Papa, S., Jones, J., Alvarez, K. et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Almasi, S., Long, C. Y., Sterea, A., Clements, D. R., Gujar, S. & El, H. Y. TRPM2 silencing causes G2/M arrest and apoptosis in lung cancer cells via increasing intracellular ROS and RNS levels and activating the JNK pathway. Cell Physiol. Biochem. 52, 742–757 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Diepenbruck, M. & Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr. Opin. Cell Biol. 43, 7–13 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S. & Weinberg, R. A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Oliveira-Ferrer, L., Legler, K. & Milde-Langosch, K. Role of protein glycosylation in cancer metastasis. Semin. Cancer Biol. 44, 141–152 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Pinho, S. S., Seruca, R., Gartner, F., Yamaguchi, Y., Gu, J., Taniguchi, N. et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol. Life Sci. 68, 1011–1020 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Google Scholar 

  • 18.

    Sturgis E. M., Ferlay J., Hashibe M., Winn D. M. Oral cavity, Oropharynx, Lip, and Salivary Glands. in Cancer epidemiology and prevention (eds Linet M. S., Cerhan J. R., Thun M. J., Haiman C. A., D, S), 543–578. (Oxford University Press, New York, 2018)

  • 19.

    Kreppel, M., Nazarli, P., Grandoch, A., Safi, A. F., Zirk, M., Nickenig, H. J. et al. Clinical and histopathological staging in oral squamous cell carcinoma – Comparison of the prognostic significance. Oral Oncol. 60, 68–73 (2016).

    PubMed 

    Google Scholar 

  • 20.

    Koyfman, S. A., Ismaila, N., Crook, D., D’Cruz, A., Rodriguez, C. P., Sher, D. J. et al. Management of the neck in squamous cell carcinoma of the oral cavity and oropharynx: ASCO clinical practice guideline. J. Clin. Oncol. 37, 1753–1774 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Pu, Y. F., Wang, L., Wu, H. H., Bian, H., Hong, Y. Y., Wang, Y. X. et al. Generation of homologous cell pairs using the oral lymphatic system. Int. J. Clin. Exp. Pathol. 7, 1563–1571 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Bais, M. V., Kukuruzinska, M. & Trackman, P. C. Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral Oncol. 51, 476–482 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Xiang, G., Li, X., Cao, L., Zhu, C., Dai, Z., Pan, S. et al. Frequent overexpression of PDK1 in primary nasopharyngeal carcinoma is associated with poor prognosis. Pathol. Res. Pract. 212, 1102–1107 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Shi, Y., Nikulenkov, F., Zawacka-Pankau, J., Li, H., Gabdoulline, R., Xu, J. et al. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 21, 612–623 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M. et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6, 931–940 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. & Mercurio, A. M. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J. Cell Biol. 168, 29–33 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Vander, H. M., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  • 30.

    Payen, V. L., Porporato, P. E., Baselet, B. & Sonveaux, P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol. Life Sci. 73, 1333–1348 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Ma, X., Wang, L., Huang, D., Li, Y., Yang, D., Li, T. et al. Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway. Nat. Commun. 8, 1506 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Wu, S., Wang, H., Li, Y., Xie, Y., Huang, C., Zhao, H. et al. Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway. Cancer Res. 78, 4549–4562 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Pes, G. M., Errigo, A., Soro, S., Longo, N. P. & Dore, M. P. Glucose-6-phosphate dehydrogenase deficiency reduces susceptibility to cancer of endodermal origin. Acta Oncol. 58, 1205–1211 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Srinivas, U. S., Tan, B., Vellayappan, B. A., Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2018).

  • 35.

    Fukawa, T., Kajiya, H., Ozeki, S., Ikebe, T. & Okabe, K. Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGF-beta secretion. Exp. Cell Res. 318, 1926–1932 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Li, H. Y., Zhang, J., Sun, L. L., Li, B. H., Gao, H. L., Xie, T. et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell Death Dis. 6, e1604 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Pinho, S. S., Osorio, H., Nita-Lazar, M., Gomes, J., Lopes, C., Gartner, F. et al. Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem. Biophys. Res. Commun. 379, 1091–1096 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Zhao, Y., Nakagawa, T., Itoh, S., Inamori, K., Isaji, T., Kariya, Y. et al. N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J. Biol. Chem. 281, 32122–32130 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S. & Taniguchi, N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc. Natl Acad. Sci. USA 92, 8754–8758 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Pinho, S. S., Reis, C. A., Paredes, J., Magalhaes, A. M., Ferreira, A. C., Figueiredo, J. et al. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum. Mol. Genet. 18, 2599–2608 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Huber, A. H. & Weis, W. I. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105, 391–402 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Sengupta, P. K., Bouchie, M. P. & Kukuruzinska, M. A. N-glycosylation gene DPAGT1 is a target of the Wnt/beta-catenin signaling pathway. J. Biol. Chem. 285, 31164–31173 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Nita-Lazar, M., Noonan, V., Rebustini, I., Walker, J., Menko, A. S. & Kukuruzinska, M. A. Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res. 69, 5673–5680 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Jamal, B., Sengupta, P. K., Gao, Z. N., Nita-Lazar, M., Amin, B., Jalisi, S. et al. Aberrant amplification of the crosstalk between canonical Wnt signaling and N-glycosylation gene DPAGT1 promotes oral cancer. Oral Oncol. 48, 523–529 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here